Copied to
clipboard

G = C62.93D6order 432 = 24·33

41st non-split extension by C62 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: C62.93D6, (C6×Dic3)⋊6S3, C327D49S3, C338D42C2, C3325(C4○D4), C3315D42C2, C3⋊Dic3.39D6, C334Q810C2, C35(D6.3D6), (C3×Dic3).44D6, C34(C12.59D6), C3217(C4○D12), (C32×C6).56C23, (C3×C62).27C22, C3224(D42S3), C335C4.12C22, (C32×Dic3).30C22, C6.66(C2×S32), (C2×C6).40S32, (Dic3×C3×C6)⋊8C2, C338(C2×C4)⋊8C2, (C2×C3⋊S3).37D6, C22.1(S3×C3⋊S3), (Dic3×C3⋊S3)⋊10C2, C6.19(C22×C3⋊S3), (C3×C327D4)⋊2C2, Dic3.9(C2×C3⋊S3), (C2×Dic3)⋊3(C3⋊S3), (C6×C3⋊S3).29C22, (C3×C6).111(C22×S3), (C3×C3⋊Dic3).22C22, (C2×C33⋊C2).10C22, C2.20(C2×S3×C3⋊S3), (C2×C6).7(C2×C3⋊S3), SmallGroup(432,678)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C62.93D6
C1C3C32C33C32×C6C32×Dic3Dic3×C3⋊S3 — C62.93D6
C33C32×C6 — C62.93D6
C1C2C22

Generators and relations for C62.93D6
 G = < a,b,c,d | a6=b6=1, c6=d2=b3, ab=ba, ac=ca, dad-1=a-1b3, cbc-1=dbd-1=b-1, dcd-1=c5 >

Subgroups: 1792 in 304 conjugacy classes, 68 normal (32 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, Q8, C32, C32, C32, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C62, C4○D12, D42S3, C3×C3⋊S3, C33⋊C2, C32×C6, C32×C6, S3×Dic3, C6.D6, C3⋊D12, C322Q8, C6×Dic3, C3×C3⋊D4, C324Q8, C4×C3⋊S3, C12⋊S3, C327D4, C327D4, C6×C12, C32×Dic3, C3×C3⋊Dic3, C335C4, C6×C3⋊S3, C2×C33⋊C2, C3×C62, D6.3D6, C12.59D6, Dic3×C3⋊S3, C338(C2×C4), C338D4, C334Q8, Dic3×C3×C6, C3×C327D4, C3315D4, C62.93D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C3⋊S3, C22×S3, S32, C2×C3⋊S3, C4○D12, D42S3, C2×S32, C22×C3⋊S3, S3×C3⋊S3, D6.3D6, C12.59D6, C2×S3×C3⋊S3, C62.93D6

Smallest permutation representation of C62.93D6
On 72 points
Generators in S72
(1 31 45)(2 32 46)(3 33 47)(4 34 48)(5 35 37)(6 36 38)(7 25 39)(8 26 40)(9 27 41)(10 28 42)(11 29 43)(12 30 44)(13 59 64 19 53 70)(14 60 65 20 54 71)(15 49 66 21 55 72)(16 50 67 22 56 61)(17 51 68 23 57 62)(18 52 69 24 58 63)
(1 3 5 7 9 11)(2 12 10 8 6 4)(13 15 17 19 21 23)(14 24 22 20 18 16)(25 27 29 31 33 35)(26 36 34 32 30 28)(37 39 41 43 45 47)(38 48 46 44 42 40)(49 51 53 55 57 59)(50 60 58 56 54 52)(61 71 69 67 65 63)(62 64 66 68 70 72)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 53 7 59)(2 58 8 52)(3 51 9 57)(4 56 10 50)(5 49 11 55)(6 54 12 60)(13 25 19 31)(14 30 20 36)(15 35 21 29)(16 28 22 34)(17 33 23 27)(18 26 24 32)(37 72 43 66)(38 65 44 71)(39 70 45 64)(40 63 46 69)(41 68 47 62)(42 61 48 67)

G:=sub<Sym(72)| (1,31,45)(2,32,46)(3,33,47)(4,34,48)(5,35,37)(6,36,38)(7,25,39)(8,26,40)(9,27,41)(10,28,42)(11,29,43)(12,30,44)(13,59,64,19,53,70)(14,60,65,20,54,71)(15,49,66,21,55,72)(16,50,67,22,56,61)(17,51,68,23,57,62)(18,52,69,24,58,63), (1,3,5,7,9,11)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,24,22,20,18,16)(25,27,29,31,33,35)(26,36,34,32,30,28)(37,39,41,43,45,47)(38,48,46,44,42,40)(49,51,53,55,57,59)(50,60,58,56,54,52)(61,71,69,67,65,63)(62,64,66,68,70,72), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,53,7,59)(2,58,8,52)(3,51,9,57)(4,56,10,50)(5,49,11,55)(6,54,12,60)(13,25,19,31)(14,30,20,36)(15,35,21,29)(16,28,22,34)(17,33,23,27)(18,26,24,32)(37,72,43,66)(38,65,44,71)(39,70,45,64)(40,63,46,69)(41,68,47,62)(42,61,48,67)>;

G:=Group( (1,31,45)(2,32,46)(3,33,47)(4,34,48)(5,35,37)(6,36,38)(7,25,39)(8,26,40)(9,27,41)(10,28,42)(11,29,43)(12,30,44)(13,59,64,19,53,70)(14,60,65,20,54,71)(15,49,66,21,55,72)(16,50,67,22,56,61)(17,51,68,23,57,62)(18,52,69,24,58,63), (1,3,5,7,9,11)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,24,22,20,18,16)(25,27,29,31,33,35)(26,36,34,32,30,28)(37,39,41,43,45,47)(38,48,46,44,42,40)(49,51,53,55,57,59)(50,60,58,56,54,52)(61,71,69,67,65,63)(62,64,66,68,70,72), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,53,7,59)(2,58,8,52)(3,51,9,57)(4,56,10,50)(5,49,11,55)(6,54,12,60)(13,25,19,31)(14,30,20,36)(15,35,21,29)(16,28,22,34)(17,33,23,27)(18,26,24,32)(37,72,43,66)(38,65,44,71)(39,70,45,64)(40,63,46,69)(41,68,47,62)(42,61,48,67) );

G=PermutationGroup([[(1,31,45),(2,32,46),(3,33,47),(4,34,48),(5,35,37),(6,36,38),(7,25,39),(8,26,40),(9,27,41),(10,28,42),(11,29,43),(12,30,44),(13,59,64,19,53,70),(14,60,65,20,54,71),(15,49,66,21,55,72),(16,50,67,22,56,61),(17,51,68,23,57,62),(18,52,69,24,58,63)], [(1,3,5,7,9,11),(2,12,10,8,6,4),(13,15,17,19,21,23),(14,24,22,20,18,16),(25,27,29,31,33,35),(26,36,34,32,30,28),(37,39,41,43,45,47),(38,48,46,44,42,40),(49,51,53,55,57,59),(50,60,58,56,54,52),(61,71,69,67,65,63),(62,64,66,68,70,72)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,53,7,59),(2,58,8,52),(3,51,9,57),(4,56,10,50),(5,49,11,55),(6,54,12,60),(13,25,19,31),(14,30,20,36),(15,35,21,29),(16,28,22,34),(17,33,23,27),(18,26,24,32),(37,72,43,66),(38,65,44,71),(39,70,45,64),(40,63,46,69),(41,68,47,62),(42,61,48,67)]])

63 conjugacy classes

class 1 2A2B2C2D3A···3E3F3G3H3I4A4B4C4D4E6A···6M6N···6Z6AA12A···12P12Q
order122223···33333444446···66···6612···1212
size11218542···2444433618542···24···4366···636

63 irreducible representations

dim11111111222222224444
type+++++++++++++++-+
imageC1C2C2C2C2C2C2C2S3S3D6D6D6D6C4○D4C4○D12S32D42S3C2×S32D6.3D6
kernelC62.93D6Dic3×C3⋊S3C338(C2×C4)C338D4C334Q8Dic3×C3×C6C3×C327D4C3315D4C6×Dic3C327D4C3×Dic3C3⋊Dic3C2×C3⋊S3C62C33C32C2×C6C32C6C3
# reps111111114181152164148

Matrix representation of C62.93D6 in GL6(𝔽13)

300000
540000
0012000
0001200
000001
00001212
,
1200000
0120000
0012100
0012000
000010
000001
,
500000
050000
000100
001000
000001
00001212
,
510000
080000
000100
001000
000001
000010

G:=sub<GL(6,GF(13))| [3,5,0,0,0,0,0,4,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[5,0,0,0,0,0,1,8,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C62.93D6 in GAP, Magma, Sage, TeX

C_6^2._{93}D_6
% in TeX

G:=Group("C6^2.93D6");
// GroupNames label

G:=SmallGroup(432,678);
// by ID

G=gap.SmallGroup(432,678);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,135,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=d^2=b^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^3,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽